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Abstract Contact sites between amino acids characterize im-
portant structural features of a protein. We investigated char-
acteristics of contact sites in a representative set of proteins
and their relations between protein class or topology. For this
purpose, we used a non-redundant set of 5872 protein do-
mains, identically categorized by CATH and SCOP databases.
The proteins represented alpha, beta, and alpha+beta classes.
Contact maps of protein structures were obtained for a select-
ed set of physical distances in the main backbone and separa-
tions in protein sequences. For each set a dependency between
contact degree and distance parameters was quantified. We
indicated residues forming contact sites most frequently and
unique amino acid pairs which created contact sites most often
within each structural class. Contact characteristics of specific
topologies were compared to the characteristics of their pro-
tein classes showing protein groups with a distinguished con-
tact characteristic. We showed that our results could be used to
improve the performance of recent top contact predictor —
direct coupling analysis. Our work provides values of contact
site propensities that can be involved in bioinformatic databases.

Keywords CATH .Contact propensity .Contact sites .Direct
coupling analysis . Protein classification . SCOP

Introduction

Protein structure prediction is one of the most important topics
in current bioinformatics. Information about protein tertiary
structure is crucial in understanding the molecular basis of
disease and can support the procedure of drug design. Another
reason for protein structure prediction is low ratio of proteins
with resolved structures, comparing to the total number of
known protein sequences. Statistics from protein databases,
UniProt [1] and Protein Data Bank (PDB) [2] (as of August
2014), show that this ratio is c.a. 0.13 %. Such a low ratio is
due to the difficulties in obtaining crystallographic structures.
One of the methods supporting protein structure prediction is
application of contact sites prediction in the procedure of full
structure prediction. Two amino acids are regarded as a con-
tact site when two of their atoms (usually Cα or Cβ from the
main backbone) are not further from each other than a selected
distance value. The popular measure of contact predictor
performance is a prediction accuracy calculated for residue
pairs which are the most probable to form the contact.
Currently, the best predicting methods do not achieve accura-
cy higher than 60 % when considering the 200 best predicted
contact sites in a protein [3–5]. This is usually insufficient for
a full protein structure reconstruction. However, these num-
bers are still increasing along with the development of knowl-
edge of contact sites and amino acid interactions.

In order to increase the prediction accuracy of contact
prediction methods, contact characteristics in proteins must
be fully examined. There have been published several studies
which investigated contact characteristics within different
protein groups [6–10]. Some of them also performed the
analysis according to the protein classification. This is partic-
ularly important since most of the contact sites prediction
methods often use protein classification in the assessment
stage of the predictor design. Unfortunately, except the fact
that all previous studies were based on different, not very
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numerous datasets, there was also no single universal way of
protein classification. Many databases classify proteins differ-
ently, according to their structural or functional similarity, and
organize them in different, hierarchized groups. The inconsis-
tency of protein classification by two different databases can
lead to the difficulties in comparison of methods which use
them. It is not surprising then that SCOP [11] and CATH [12]
databases, which became the gold-standard databases in struc-
tural biology, were extensively evaluated in terms of their
differences and similarities [13, 14]. To effectively examine
the contact characteristics in proteins from different structural
groups, a numerous, non-redundant protein set is necessary.
Moreover, the reliable classification of proteins in this set is of
great importance. Only contact characteristics obtained that
way will be universal and credible enough to be supportive in
contact sites prediction. Furthermore, the analysis of contact
characteristics in different protein structural classes can indi-
cate subsets of proteins with unique contact distributions.
These groups can be particularly interesting with respect to
the assessment of contact sites prediction methods.

The first objective of our study was to examine the contact
characteristics in a large, non-redundant set of protein do-
mains which were identically classified by CATH and SCOP
databases [14]. We investigated if there is any relation be-
tween characteristics of contact sites and two protein structure
levels: class and topology. Class includes proteins composed
mainly of one secondary structure — alpha helix or beta
structure, or both in similar quantity. Topology includes pro-
teins in which secondary structures are placed in space and
inter-connected similarly to each other. Our second goal was
to examine if the contact characteristics obtained this way can
support the contact prediction process.

Methods

Contact characteristics analysis

Data sources

Contact sites occurrence was examined in 5872 protein do-
mains identically categorized by CATH and SCOP databases
according to Csaba et al. [14]. Proteins were classified with
CATH nomenclature into three classes: alpha, beta, and al-
pha+beta with 1090, 1589, and 3193 proteins, respectively.
We used CD-HIT [15] to ensure the sequence identity be-
tween domains was not higher than 50 % within each class.
We selected 15 and 14 topologies from alpha and beta classes,
respectively, which included at least 20 domains in our
dataset, each. Table 1 presents a list of these topologies
with their numbers later used in our analysis.
Information about atom coordinates of proteins was obtained
from the PDB database.

Contact sites parameters

To analyze the occurrence pattern of contact sites in proteins,
we defined a contact site such that the space distance between
Cβ atoms of two different amino acids was not greater than a
specified distance value (cutoff) and the contacting amino
acids were separated in a protein sequence by no less than a
specified number of amino acids (separation). In our study
two adjacent residues in a sequence have separation equal 1.
We found contact sites using cutoff values between 6 and 12 Å
and separation values of 1–15 amino acids. Such cutoff values
were chosen according to the results of Duarte et al. [16] and
ensure high efficiency of protein structure reconstruction from
a contact map.

Table 1 List of topologies of which at least 20 proteins were available in
the analyzed dataset. Topologies classification is derived from the CATH
database

Number Class Topology

1 Alpha Arc repressor mutant, subunit A

2 Alpha DNA polymerase; domain 1

3 Alpha Recoverin; domain 1

4 Alpha Helix hairpins

5 Alpha Globin-like

6 Alpha Cytochrome Bc1 complex; chain D, domain 2

7 Alpha Helicase, RuvA protein; domain 3\t

8 Alpha Glutathione S-transferase Yfyf (Class Pi);
chain A, domain 2

9 Alpha Four helix bundle (hemerythrin (Met), subunit A)

10 Alpha Growth hormone; Chain: A

11 Alpha Ferritin

12 Alpha Single alpha-helices involved in coiled-coils
or other helix-helix interfaces

13 Alpha Methane monooxygenase hydroxylase;
chain G, domain 1

14 Alpha Serine threonine protein phosphatase 5,
tetratricopeptide repeat

15 Alpha Glycosyltransferase

16 Beta Laminin

17 Beta Complement module; domain 1

18 Beta Neuraminidase

19 Beta Methylamine Dehydrogenase; Chain H

20 Beta Pectate lyase C-like

21 Beta PH-domain like

22 Beta SH3 type barrels

23 Beta Pdz3 domain

24 Beta Lipocalin

25 Beta Elongation factor Tu (Ef-tu); domain 3

26 Beta OB fold (dihydrolipoamide acetyltransferase, E2P)

27 Beta Jelly rolls

28 Beta Immunoglobulin-like

29 Beta Trefoil (acidic fibroblast growth factor, subunit A)
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Average contact degree

We defined contact degree as a number of contact sites
for a specified residue. Average contact degree was
calculated of all amino acids in analyzed proteins for
specified cutoff and separation values. Dependencies
between average contact degree and contact sites pa-
rameters (cutoff and separation) were examined. The
relations were analyzed for alpha, beta, and alpha+beta
classes, separately.

Amino acids frequency of forming contact sites

We examined the propensity of each amino acid type for
contact site formation. Therefore, Wc parameter was defined.
It shows how often, on average in all proteins, one amino acid
forms a contact site related to the number of its total occur-
rences in proteins from a specified class. The parameter Wc is
defined as follows:

Wca;k ¼ 1

Na;k

X

n¼1

Na;k Ica;n
Iwa;n

ð1Þ

where:

Na,k total number of proteins which contain amino
acid of type a in their sequences and belong
to class k

Ica,n number of amino acids of type a which form at
least one contact site in the nth protein from the
dataset

Iwa,n number of all amino acids of type a in the nth
protein from the dataset.

We examined the distribution of Wc values for different
amino acids, separately for the results on alpha, beta, and
alpha+beta classes, and applying different cutoff and
separation values.

Similar to Wc, we introduced another parameter Wt, which
shows how often one amino acid forms a contact site related to
its total occurrence in proteins from specified topology. The
parameter Wt is defined as follows:

Wta;t ¼ 1

Na;t

X

n¼1

Na;t Ica;n
Iwa;n

ð2Þ

where:

Na,t total number of proteins which contain amino acid
of type a in their sequences and belong to topology t

Ica,n number of amino acids of type a which form
at least one contact site in the nth protein
from the dataset

Iwa,n number of all amino acids of type a in the nth
protein from the dataset.

Frequency of a contact site for a pair of amino acids

To specify amino acid pairs that create a contact site between
each other the most often, the parameter fp was defined. It
shows how often a pair of amino acids creates a contact site,
globally, summing the results from all proteins within the
specific class. The fp parameter is defined as follows:

f pa1;a2;k ¼
Jca1;a2;k
Jwk

ð3Þ

where:

Jca1,a2,k number of contact sites formed between amino
acids of types a1 and a2 in proteins from class k

Jwk number of all contact sites in proteins from class k.

Additionally, we introduced the normalized value of pa-
rameter fp. It combines the information obtained from fp value
with the occurrence frequencies of amino acids in pair within
all proteins from specific class. It is defined as follows:

f pna1;a2;k ¼
f pa1;a2;k
f a1;k ⋅ f a2;k

ð4Þ

where:

fa,k the occurrence frequency of amino acid of type a
in proteins from class k.

The fp and fpn parameters were calculated for alpha, beta,
and alpha+beta classes, separately. We applied cutoff equal
8 Å and separation equal ten amino acids.

Divergence of contact sites in different topologies

Finally, we examined the contact site characteristics within
different topologies. Therefore, the parameter St was defined.
St shows how similar the distribution of Wt values in one
topology related to the distribution of Wc values in the class
to which this topology belongs. In other words, the smaller
value of St, the better a topology represents its class. The St
parameter is defined as follows:

St ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Na;t−1

X

a¼1

Na;t

W ta;t−Wca;k tð Þ
� � 2

vuut ð5Þ

where:

Na,t number of different amino acid types a
which occur in topology t (without X
amino acid — maximum 20)

k(t) class k which contains the topology t
Wca,k(t) the propensity of amino acid of type a

for contact site formation within all proteins
from class k(t) (see Eq. 1)

J Mol Model (2014) 20:2497 Page 3 of 17, 2497



Wta,t the propensity of amino acid of type a for
contact site formation within all proteins
from topology t (see Eq. 2).

The St parameters were examined for 29 topologies
(see Table 1). We applied cutoff equal 10 Å and 12 Å, and
separation equal seven amino acids.

Implementation

All calculation procedures were implemented in Java
1.6. Information about amino acid sequences of each
CATH domain was obtained with BioJava 3.0 [17].
Visualization of the results was performed with MATLAB
ver. R2011a (MathWorks).

Application of contact characteristics in residue-residue
contact prediction methods

Data sources

The contact sites prediction procedure presented in our
study was tested on two datasets. The first one was the
dataset used by us previously in Data sources to obtain
contact characteristics. The second dataset was based on
the protein set used by Morcos et al. [3] who used it to
examine the contact sites prediction accuracy of their
direct coupling analysis (DCA) algorithm. The original
Morcos's set of 856 PDB structures was split into Pfam
[18] database domains. Here again we used CD-HIT to
ensure the sequence identity between domains was not
higher than 50 %. Finally, our second dataset consisted
of 562 different Pfam domains. Information about atom
coordinates and secondary structures of domains were
obtained from the PDB and DSSP [19, 20] databases,
respectively. Multiple sequence alignment used in DCA
algorithm was gained from the Pfam database.

Contact site definition

Contact site definition used in the assessment of contact sites
prediction procedure presented in our study was based on the
distance between Cβ atoms of two different amino acids. The
cutoff and separation values were 8 Å and ten amino acids,
respectively.

Application of fp parameter in residue-residue contact
prediction

Our contact sites prediction procedure required the application
of a main contact sites prediction method. We chose the DCA
algorithm presented by Morcos et al. [3]. The DCA calculates
direct information (DI) values for each of the residue pairs in

the analyzed sequence. The higher value of DI, the higher
probability of a pair to create a contact site. With the applica-
tion of fp values calculated in our study (see Eq. 3), we aimed
at improving the final contact sites prediction accuracy of the
DCA. The idea was to change the composition of 200 amino
acid pairs with the highest DI values in each protein, so that
pairs best match the fp statistics calculated previously in our
study. After obtaining the DI values for analyzed domain we
applied the following steps:

a) Each domain was assigned to one of three structural
classes, alpha, beta, or alpha+beta, according to the meth-
od described by Eisenhaber et al. [21]. Therefore, basing
on the data from DSSP database, residues with the sec-
ondary structural types H, G, and I were classified as helix
and residues with type E were marked as sheet. Also, all
helices shorter than five amino acids and strands shorter
than three amino acids were reassigned to coil. Finally,
according to Nakashima et al. [22], a domain that
consisted of more than 15 % helices and less than 10 %
sheets was classified as alpha, a domain consisted of less
than 15 % helices and more than 10 % sheets was classi-
fied as beta, and a domain consisted of less than 15 %
helices and less than 10 % sheets was classified as alpha+
beta. A domain which did not match any of these groups
was left and not examined in further steps of the
procedure.

b) Residue pairs were sorted according to their DI value in
descending order and divided into two groups. The first
group consisted of 200 pairs with the highest DI values
(top-set) and the rest of pairs were assigned into the
second group (rest-set).

c) Starting from a pair with the lowest DI value in the
top-set and passing along pairs with higher DI
values, the fp of each pair was calculated as in
Eq. 6. Only amino acid pairs which included at
least one residue of type X were not examined.
Significant assumption was that the final improved
set of residue pairs must at the end consist of 200
pairs just like the original set. Therefore, the con-
stant value of 200 occurs in the following formulas.

f pa1;a2;d ¼
Jca1;a2;d
200

ð6Þ

where:

Jca1,a2,d number of residue pairs including both amino
acids of types a1 and a2 in top-set of domain d.

The fp value was calculated twice for each pair.
Firstly, with the occurrence of the analyzed pair in the
top-set. Secondly, without taking the occurrence of the
analyzed pair in the top-set into account. The constant
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number in Eq. 6 always equalled 200. Then, the fol-
lowing statement was applied:

if f pinca1;a2;d− f pa1;a2;k
�� �� > f pexca1;a2;d− f pa1;a2;k

�� ��� �
then

remove pair from top−set
else

leave pair in top−set
ð7Þ

where for the currently analyzed pair containing amino
acids of types a1 and a2:

fpinca1,a2,d fp value for the residue pairs containing amino
acids of types a1 and a2 in the top-set of domain
d (see Eq. 6) including (inc) the occurrence of the
analyzed pair in the top-set

fpexca1,a2,d fp value for the residue pairs containing amino
acids of types a1 and a2 in the top-set of domain
d (see Eq. 6) excluding (exc) the occurrence of
the analyzed pair in the top-set

fpa1,a2,k fp value for the residue pairs containing amino
acids of types a1 and a2 (see Eq. 3) for class k to
which the analyzed domain belongs according to
the step a).

The removed pairs created the third group — rmv-set.
Residue pairs in rmv-set were sorted by their assignment into
this set.

d) Starting from a pair with the highest DI value in the rest-
set and passing along pairs with lower DI values, the fp of
each pair was calculated as in Eq. 6. This value was again
calculated twice for each pair (with and without the oc-
currence of the analyzed pair in the top-set) and not for
amino acid pairs which consisted of at least one residue
type X. The constant number in Eq. 6 still equals 200.
Then, the following statement was applied:

if f pinca1;a2;d− f pa1;a2;k
�� �� > f pexca1;a2;d− f pa1;a2;k

�� ��� �
then

leave pair in rest−set
else

add pair to the end of top−set
ð8Þ

where for the analyzed pair containing amino acids of types
a1 and a2:

fpinca1,a2,d fp value for the residue pairs containing amino
acids of types a1 and a2 in the top-set of domain
d (see Eq. 6) including (inc) the occurrence of the
analyzed pair in the top-set

fpexca1,a2,d fp value for the residue pairs containing amino
acids of types a1 and a2 in the top-set of domain
d (see Eq. 6) excluding (exc) the occurrence of
the analyzed pair in the top-set

fpa1,a2,k fp value for the residue pairs containing amino
acids of types a1 and a2 (see Eq. 3) for class k to
which the analyzed domain belongs according to
the step a).

The procedure described above was performed until the
number of pairs in the top-set was equal to 200 or until all
pairs in the rest-set were examined.

e) This step was executed only if number of pairs in the top-
set was not equal to 200 after the previous steps. Then,
until this number was equal to 200, the latest added pairs
in rmv-set were inserted at the end of the top-set.

We examined the results of our procedure for all domains
in the dataset at once and separating them into classes. The
algorithm assessment was performed as in Morcos et al. [3].
Therefore, we calculated the average true positive (TP) rate of
contact prediction in analyzed domains as a function of the
number of top-ranked contacts from 1 to 200.

Application of fpn parameter in residue-residue contact
prediction

The procedure presented in Application of fp parameter in
residue-residue contact prediction was repeated with the appli-
cation of fpn values calculated in our study (see Eq. 4).
Therefore, Eq. 6 was replaced as follows:

f pna1;a2;d ¼
Jca1;a2;d
200

f a1;d ⋅ f a2;d
ð9Þ

where:

Jca1,a2,d number of residue pairs consisting both amino
acids of types a1 and a2 in top-set of domain d

fa,d the occurrence frequency of amino acid of type a in
domain d.

Constant value equal to 200 occurred in Eq. 9 for the same
reason as it was in Eq. 6. The final improved set of residue pairs
must at the end consist of 200 pairs just like the original set.

Then, Eq. 7 was changed into the following equation:

if f pninca1;a2;d− f pna1;a2;k
�� �� > f pnexca1;a2;d− f pna1;a2;k

�� ��� �
then

remove pair from top−set
else

leave pair in top−set
ð10Þ

where for the analyzed pair containing amino acids of types
a1 and a2:

fpninca1,a2,d
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normalized value of fp for the residue pairs
containing amino acids of types a1 and a2 in the
top-set of domain d (see Eq. 9) including (inc)
the occurrence of the analyzed pair in the top-set

fpnexca1,a2,d normalized value of fp for the residue pairs
containing amino acids of types a1 and a2 in the
top-set of domain d (see Eq. 9) excluding (exc)
the occurrence of the analyzed pair in the top-set

fpna1,a2,k normalized value of fp for the residue pairs
containing amino acids of types a1 and a2 (see
Eq. 4) for class k to which the analyzed domain
belongs according to the step a) in Application
of fp parameter in residue-residue contact
prediction.

Finally, Eq. 8 was replaced with:

if f pninca1;a2;d− f pna1;a2;k
�� �� > f pnexca1;a2;d− f pna1;a2;k

�� ��� �
then

leave pair in rest−set
else

add pair to the end of top−set
ð11Þ

where for the analyzed pair containing amino acids of types
a1 and a2:

fpninca1,a2,d normalized value of fp for the residue pairs
containing amino acids of types a1 and a2 in the
top-set of domain d (see Eq. 9) including (inc)
the occurrence of the analyzed pair in the top-set

fpnexca1,a2,d normalized value of fp for the residue pairs
containing amino acids of types a1 and a2 in the
top-set of domain d (see Eq. 9) excluding (exc)
the occurrence of the analyzed pair in the top-set

fpna1,a2,k normalized value of fp for the residue pairs
containing amino acids of types a1 and a2 (see
Eq. 4) for class k to which the analyzed domain
belongs according to the step a) in Application of
fp parameter in residue-residue contact prediction.

Implementation

Contact sites prediction procedure presented in our study was
implemented in Java 1.6. The DCA algorithm was adopted in
Java 1.6 as described byMorcos et al. [3]. The implementation
of DCA in Java was tested and compared with its original
implementation in MATLAB (http://dca.upmc.fr/DCA/DCA.
html). Visualization of the results was performed with
MATLAB ver. R2011a (MathWorks).

Results

Contact characteristics analysis

Dataset representativity

First, we analyzed if our basic dataset (see Data sources) is
representative of the whole protein world. Figure 1 compares
the frequency between amino acids in proteins from UniProt
database (as of August 2014) and analyzed in this work.

Figure 1 shows that similarity between frequency distribu-
tions for both datasets is high. First six amino acids with the
highest values of appearance frequency are the same.
Furthermore, two-sample Kolmogorov-Smirnov tests did not
reject the hypothesis that presented frequencies from both ana-
lyzed datasets were from the same continuous distribution (5 %
significance). Kendall rank correlation coefficient for distribu-
tions fromFig. 1 equalled 0.94, whichmeans that they are highly
correlated. This proves that our analyzed dataset is representative
and consistent with proteins collected in UniProt database.

Average contact degree

Figure 2 shows the dependency between average contact
degree (see Average contact degree) and cutoff distance used
in contact sites definition for proteins form alpha class. The
analysis was carried out for different values of separation.

All presented dependencies are power regardless of the
separation parameter for alpha (Fig. 2), beta (not shown),
and alpha+beta (not shown) classes. Table 2 shows values of
a and b parameters of the fitting function y=a xb, which best
matched both classes. In the table we also present R-squared
values, which account for the accuracy of every interpolated
function. These values are always higher than 0.99, which
represents high interpolation matching.

Figure 3 shows the dependency between average contact
degree and separation used in contact sites definition for proteins
from alpha class. The analysis was studied for different cutoff
values. The shapes of the plots were similar with the results for
proteins from beta and alpha+beta classes (not shown). Again
each plot can be interpolated with power function — a and b
parameters of the fitting function y=a xb are shown in Table 3.
R-squared values of these plots interpolations are always higher
than 0.94, therefore the power interpolation is fully acceptable.
However, we note that standard deviation of the points in Figs. 2
and 3 is 30–140 % for class alpha, 35-100 % for class beta, and
35-110 % for class alpha+beta of their average value.

Tables 2 and 3 show that average contact degree is always
higher for proteins from class beta than those from class alpha,
regardless of the cutoff and separation values. It is due to a
higher density ofβ-sheets than that ofα-helices. Furthermore,
Figs. 2 and 3 show that while the dependency between aver-
age contact degree increases with the cutoff value, average
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contact degree decreases with the separation value.
Moreover, the slope of the dependency between average con-
tact degree and cutoff value is steeper than that of the average
contact degree and separation value. It is particularly notable
for separation higher than three amino acids. There can be
several reasons explaining the difference in slopes. Firstly, the
change in the cutoff value should have a higher impact on
contact site occurrence. Since the average atom size equals
1 Å, the average dimension of amino acid backbone is about
3 Å. Therefore, to make a change of separation parameter more
important for the occurrence of contact site, separation param-
eter should be less than three amino acids for cutoff value of
6 Å and less than five amino acids for cutoff value of 12 Å.

Amino acids frequency of forming contact sites

Figures 4 and 5 present bar plots of Wc values (see Amino
acids frequency of forming contact sites, Eq. 1) for different
amino acid types and contact sites parameters. Comparison
between results for class alpha and results for class beta shows
that their characteristics are similar. The only difference is a
higher level reached by bars for class beta. It stems from the
fact that the occurrence of contact sites in class beta is higher
than in class alpha. Furthermore, the change of cutoff and
separation parameters affects Wc values for all amino acids
in the same way. With the increase of the cutoff values, theWc

values grow for all amino acids. The difference between bar
heights for two adjoining amino acids on the x-axis remains
the same. However, similarly to what was observed in the
previous paragraph, the change of the separation has lower
impact on contact sites occurrence than a change of the cutoff.

Finally, Figs. 4 and 5 give a possibility of indicating amino
acids with particularly high levels ofWc value. They are similar
for both alpha and beta classes: Cys, Ile, Leu,Met, Phe, Trp, Tyr,
and Val. The reason why these amino acids create contact sites
the most often lays in their physicochemical nature. All of them
are hydrophobic and neutral. The lack of charge makes them
more prone to make a contact site because they are not repelled
by amino acids with a positive or negative charge. Therefore,
they can form contact sites with more amino acids. Furthermore,
hydrophobicity is greatly related to the burial of the residue in the
protein structure. In general, in water environment, hydrophobic
amino acids are pushed away from water molecules to inside of
the protein. Hence, they have more close amino acid neighbors,
which makes them more favorable in forming contact site. This
direct relation between residue accessibility and its propensity to
create contact site was already described by Faure et al. [10] and
is compatible with results shown in Figs. 4 and 5. Finally, from
all amino acids cysteine creates contact sites the most often.
Besides the fact that this residue is on average the most buried
amino acid [10], it has the ability of creating disulfide bonds
which take part in the protein tertiary structure creation.
Cysteines in such bonds, which are in the same time far from

each other in the sequence, are thought to be a contact site. Since
most of the cysteines create this bond, their Wc value is partic-
ularly high.

Similarly, we can indicate amino acids whoseWc values are
the lowest. These are Asp, Glu, and Lys, which are all hydro-
philic and charged.

The values of Wc parameters for all amino acid types, both
alpha and beta classes and chosen contact site parameters (cutoff:
6 Å, 8 Å, and 12 Å, separation: 5 and 15) are presented in
Table A.1 and Table A.2 inAppendixA. Additionally, Table A.3
in Appendix A containsWc parameters for alpha+beta class and
the same contact site parameters as for alpha and beta classes.

Frequency of a contact site for a pair of amino acids

We analyzed the top 20 residue pairs which create contact sites
the most and the least often in the analyzed proteins from
classes alpha and beta, separately. The fp values (see
Frequency of a contact site for a pair of amino acids, Eq. 3)
of all amino acid pairs in these classes are presented in the
upper halves of Table B.1 and Table B.2 (Appendix B).
According to Figs. 4 and 5, the amino acid types which create
contact sites the most often (high Wc values) mostly appear
within top creating contact sites pairs (Table B.1). Domination
of leucine within top pairs fromTable B.1 and Table B.2 is due
to the fact that leucine occurs in the analyzed protein dataset
the most often (Fig. 1). Therefore, the probability of creating
the contact site between leucine and other amino acids is the
highest. On the other hand, cysteine does not appear within
top pairs from Table B.1, despite the highWc value, because it
occurs in the analyzed protein dataset the least often.

Top 20 pairs from alpha and beta classes in upper halves of
Table B.1 and Table B.2 share 13 residue pairs. However,
analyzing alpha and beta classes individually, unique top pairs
for each class can be pointed out. These are for example Ala-Ala
in class alpha and Val-Val in class beta. Probably it stems from
the propensities of these pairs to certain secondary structures. For
example, alanine is one of the most popular amino acids within
proteins of class alpha, because of its high propensity to α-
helices. Similarly, valine prefers to lie within β-sheets and it is
difficult for this amino acid to adopt the α-helical conformation
[23].

In the top 20 residue pairs creating contact sites the least often,
different 11 amino acid pairs can be pointed out, occurring in
both alpha and beta classes. The most common residues within
these pairs are cysteine and tryptophan. It is because both cyste-
ine and tryptophan are amino acids which appear the least often
within all amino acids in proteins from analyzed dataset (Fig. 1).

Due to the observation of the strong dependency between
the fp values and the occurrence frequency of different amino
acid types, the parameter fp was normalized. The fpn values
(see Frequency of a contact site for a pair of amino acids,
Eq. 4) of all amino acid pairs are presented in lower halves of
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Table B.1 and Table B.2 (Appendix B). The results show that
a domination of leucine within top creating contact sites pairs
is not only related to its high occurrence in the analyzed
dataset. After normalization leucine still presents high propen-
sity for a contact site creation. However, Table B.1 and
Table B.2 show that now amino acids with the highest contact
sites propensities are also Cys, Phe, Trp, and Met which had
the lowest values of parameter fp before normalization. It
perfectly matches the results presented in Figs. 4 and 5 and
is connected with the physicochemical nature of these amino
acids. The highest value obtained for Cys-Cys pair in both
alpha and beta classes suggests that the ability of cysteine to
create disulfide bonds is greatly connected with its high pro-
pensity to creating contact sites. On the other hand, there are
much fewer differences in top creating contact sites pairs
between classes alpha and beta than it was for parameter fp.

However, still some distinctions can be observed. Results
obtained for class alpha present more pairs containing cysteine
and methionine, while results for class beta show more pairs
containing tryptophan within top creating contact sites pairs.

The fp and fpn values of all amino acid pairs in class
alpha+beta were not compared in detail with results for
classes alpha and beta in our study. However, they are
presented in Table B.3 (Appendix B) and will be used later
in our analysis.

Analysis of residue pairs propensities to create contact sites
appeared in other studies before [6–10]. Despite significant
differences in compositions and sizes of datasets, the most
distinctive difference between methodologies applied in those
studies is a contact site definition. Depending on the definition
used, the results were more similar to fp or fpn parameter
presented in our study. Therefore, we examined the similarity

Fig. 1 Frequency of amino acids
in proteins from UniProt database
(black) and our database (gray)

Fig. 2 Average contact degree of
proteins from class alpha as a
function of cutoff used in contact
sites definition. Plots presented
for different separations: one
(white circle), three (black circle),
five (white diamond), seven
(white square), ten (black
square), and fifteen (black up-
pointing triangle) amino acids.
Plots are fitted with power
functions specified in Table 2
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of the results obtained while applying different contact defi-
nition, dataset composition, and dataset size comparing to the
results of our analysis. Thus, we compared our results with the
results of Adamian and Liang [9]. Adamian and Liang pre-
sented frequencies of top 20 interacting residue pairs analyzed
in 14 membrane proteins and 31 soluble alpha-helical pro-
teins. These values are presented in Figs. 6 and 7 with the fp
values of amino acid pairs for proteins from our dataset, for
classes alpha and beta separately. Numbers representing the
bars on the plots are presented in Table C.1 (Appendix C). It is
significant that the number of proteins used by Adamian and
Liang in their analysis is much lower than in our study and that
their definition of interaction somehow differs from our def-
inition of contact site. They define the interaction using the
geometric structures of the Voronoi diagram, the Delaunay
triangulation and the alpha complex. Contacting atoms are the
atoms whose Voronoi cells intersect. Nevertheless, despite the
differences in contact site definition and the size of the ana-
lyzed datasets, Figs. 6 and 7 show important similarities.

As Table C.1 shows, fp values for amino acid pairs for
proteins from class alpha are more similar to the top 20
interacting pairs frequencies from membrane and soluble pro-
teins, than those from class beta. It stems from the fact that
both sets of membrane and soluble proteins contain mainly
alpha helices, which are the main structures of alpha class
proteins. Furthermore, fp values for pairs from class alpha
match top 20 interacting pairs from soluble proteins better
than those from membrane proteins. This occurs probably
because soluble proteins contain some small amount of non-
helical substructures, like most of proteins from class alpha,
but still having alpha-helical structures in majority.

Finally, comparing Table B.1 and Table B.2 with Table C.1
it can be observed that most of the pairs within the top 20 from
Table B.1 and Table B.2 belong also to the top 20 interacting
pairs fromAdamian and Liang results. Twelve and ten pairs in
membrane proteins are also within the top 20 pairs from alpha
and beta class proteins, respectively. Also, 15 and 11 top
soluble pairs belong to top alpha class and top beta class
proteins, appropriately. The amino acid which occurs in most

of the shared pairs is leucine. All these pairs are denoted in
bold in Table C.1.

Divergence of contact sites in different topologies

In the end, we examined the frequency of contact sites for
different amino acids in different topologies. Figure 8 presents
St values (see Divergence of contact sites in different topolo-
gies, Eq. 5) for all 29 topologies (see Data sources, Table 1) for
the cutoff of 10 Å and 12 Å, separately, and separation of
seven amino acids. Figure 8 shows that most of the topologies
properly represent their classes (St value lower than 0.1).
However, the 12th topology from class alpha (“Single alpha-
helices involved in coiled-coils or other helix-helix inter-
faces”) has St much higher than the other topologies for cutoff
of 10Å. It means that its contact site characteristic differs from
its class. This topology includes proteins of single alpha
helices (an example domain is shown in Fig. 9). Therefore,
it is difficult to obtain any contact site in this kind of protein,
especially with the separation value of seven. For separation
of seven amino acids the differences between St values of
compared topologies were the best to observe, which can be
explained with the fact that this separation is equal to the
double of α-helice period. However, some of the proteins in
the 12th topology have contact sites because of the bends in
their α-helices. Moreover, the comparison of St values for
cutoff of 10 Å and cutoff of 12 Å shows that, for cutoff of
12 Å, difference between 12th topology and its class lowers
(its St value decreases). It probably stems from the fact that
12 Å is a distance far enough to count amino acids farther than
3 periods in α-helice as contact sites.

Application of contact characteristics in residue-residue
contact prediction methods

We examined if contact characteristics parameters described
in our study can support recent contact sites prediction
methods. We chose the fp value which represents the frequen-
cy of a residue pair to form a contact site and its normalized

Table 2 Values of a and b parameters (and the R-squared values of interpolations) from the fitting function y=a xb for alpha, beta, and
alpha+beta classes

Alpha Beta Alpha+Beta

Separation a b R2 a b R2 a b R2

1 0.0514 2.50 0.999 0.0454 2.56 0.999 0.0447 2.59 1.000

3 0.0073 3.22 1.000 0.0059 3.31 1.000 0.0065 3.31 1.000

5 0.0007 4.06 0.997 0.0046 3.36 1.000 0.0023 3.66 1.000

7 0.0008 3.95 0.999 0.0042 3.37 1.000 0.0023 3.63 1.000

10 0.0009 3.87 0.999 0.0036 3.40 1.000 0.0022 3.61 1.000

15 0.0007 3.89 0.999 0.0027 3.47 1.000 0.0019 3.62 1.000
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version— the fpn. These parameters were the most distinctive
in analyzed protein structural classes.

Application of fp parameter in residue-residue contact
prediction

Figure 10 shows the results of application of the fp value
in improving the contact site prediction accuracy of the
DCA algorithm (see Application of fp parameter in
residue-residue contact prediction). The analysis was done
for the dataset based on that used by Morcos et al. [3]
(see Data sources).

Figure 10 shows that the application of fp value in contact
sites prediction algorithm influenced the results for alpha and
beta classes more clearly than the results for alpha+beta class.
There is a high improvement for the ten top-ranked contacts in
these classes. In fact, the numbers show that better contact
prediction accuracy was achieved for up to 40, 50, and 100
top-ranked pairs in alpha, beta, and alpha+beta classes, respec-
tively. The result obtained for all classes (Fig. 10d) greatly
resembles the one for alpha+beta class (Fig. 10c). This is prob-
ably related to the highest number of domains examined in this
class, which dominate in the set of all domains. Also, there is a
slight decrease of mean TP rate when more than 100 top-ranked
contacts are analyzed. This means that while fp value can usually

properly eliminate non-contact pairswithin pairswith the highest
DCA results, it is not that successful while adding new pairs into
the top 200 pairs. It is also connected with a progressive drop of
contact prediction accuracy of DCA algorithm with the increase
of top-ranked pairs. Choosing a residue pair to add it into new
top 200 pairs from previously not assigned pairs, our algorithm
starts with pairs with the highest DCA result. Contact prediction
accuracy of this result for the 200th pair and lower is only on the
level of about 25 %.

We compared the results from Fig. 10 obtained for Morcos
et al. [3] dataset with the results gained for the dataset used to
calculate the fp value in our study. These are presented in
Fig. 11. In this case, the improvement for the top 50 contacts
is negligible and the contact sites prediction accuracy stays at
the similar level after the application of the fp value. Even
previously observed decrease of TP rate for more than 100
top-ranked pairs is much lower. However, still the best results
were obtained for the domains from alpha class. Results
presented in Fig. 11 suggest that our algorithm performs better
for the more specific dataset. Data used by Morcos et al. [3]
came from mainly bacterial domain families with large non-
redundant multiple sequence alignments. Domains examined
in our study do not belong to any specific protein family but
can be clearly assigned to one structural group. This shows
that presented algorithm is dataset source-dependant.

Fig. 3 Average contact degree of
proteins from class alpha as a
function of separation used in
contact sites definition. Plots
presented for different cutoffs:
6 Å (white square), 8 Å (black
square), 10 Å (white circle), and
12Å (black circle). Plots are fitted
with power functions

Table 3 Values of a and b parameters (and the R-squared values of interpolations) from the fitting function y=a xb for alpha, beta, and alpha+beta
classes

Alpha Beta Alpha+Beta

Cutoff a b R2 a b R2 a b R2

6 4.26 −0.68 0.943 3.95 −0.42 0.955 4.25 −0.49 0.958

8 9.30 −0.57 0.947 9.01 −0.32 0.979 9.54 −0.39 0.970

10 16.6 −0.39 0.975 15.9 −0.25 0.999 17.4 −0.29 0.992

12 27.6 −0.31 0.950 26.6 −0.20 0.990 29.3 −0.23 0.974

2497, Page 10 of 17 J Mol Model (2014) 20:2497



Application of fpn parameter in residue-residue contact
prediction

Finally, we examined how the application of fpn value in contact
sites prediction influences the prediction accuracy of DCA
algorithm (see Application of fpn parameter in residue-residue
contact prediction). The results for the dataset based on that used
by Morcos et al. [3] (see Data sources) are presented in Fig. 12.
There is much lower improvement in the prediction when the fpn
value is applied comparing to the previous results achieved for
the application of the fp value (Fig. 10). However, the increase in
mean TP rate for domains from alpha class is still evident. This
result probably stems from the fact that the fp value was much
more distinctive for alpha and beta classes than the fpn value (see
Frequency of a contact site for a pair of amino acids). The fpn
value eliminates information coming from the occurrence fre-
quency of amino acid types in different protein structural clas-
ses. On the other hand, Fig. 12 shows that there is almost no
decrease of accuracy when more than 100 top-ranked contacts

are analyzed. This is related to the fact that the algorithm based
on the fpn value eliminates fewer residue pairs with the highest
DCA results. As a result, it also adds fewer new pairs into the
improved 200 top pairs. Therefore, the final mean TP rate plot
looks much more similar to the original DCA algorithm plot,
comparing with the effect of fp value application.

We again examined the influence of the fpn value on contact
sites prediction in domains from our dataset. The results were
similar to those observed in Fig. 11 for the fp value, therefore
they were not presented. The only difference was a smaller
decrease of TP rate when more than 100 top-ranked contacts
are analyzed.

Discussion and conclusions

Our study introduced terms and parameters which can support
contact sites prediction or the assessment of contact predic-
tors. We showed that there is a dependency between the

Fig. 4 Values of Wc for different
amino acid types at cutoff 6 Å.
Class alpha and separation 7
(dark blue), class alpha and
separation 15 (bright blue), class
beta and separation 7 (red), class
beta and separation 15 (orange).
Standard deviations for every
Wc value were added to the figure

Fig. 5 Values of Wc for different
amino acid types at cutoff 12 Å.
Class alpha and separation
7 (dark blue), class alpha and
separation 15 (bright blue), class
beta and separation 7 (red), class
beta and separation 15 (orange).
Standard deviations for every
Wc value were added to the figure

J Mol Model (2014) 20:2497 Page 11 of 17, 2497



average contact degree and distance parameters (cutoff and
separation), which could be fitted with the power function.
Moreover, we proposed the parameters Wc and Wt which
specified amino acid types the most prone to create a contact
site within specific class or topology. Values of fp and fpn
enabled the exhaustive insight into pairs creating contact sites
the most and the least often. It gave the possibility of specify-
ing the unique pairs for each analyzed protein class. At this
point, we showed that despite a different definition of a
contact site used byAdamian and Liang [9] and a significantly
lower number of instances they analyzed, there was a signif-
icant resemblance between their and our results. By
introducing the St factor, we also showed that within
different protein classes there might be topologies with
totally different characteristics and frequencies of con-
tact sites occurrence, while comparing to the character-
istics of their classes. The St factor is dependent on contact
sites parameter values. Finally, we showed that with the

application of introduced parameters (fp and fpn) we could
improve the contact sites prediction accuracy of one of the
top contact sites predictors — the DCA algorithm.

Csaba et al. [14] reported many significant differences in
protein classification between two most respected protein
structure-based classification databases — SCOP and
CATH. This inconsistence can lead to serious problems in
protein studies, e.g., while comparing methods tested on dif-
ferent datasets. It also includes contact sites prediction
methods which very often examine their prediction accuracy
on different structural protein groups. It shows that the uni-
versal way of protein classification is needed. In case of
contact sites prediction methods, a protein classification data-
base which divides proteins according to their contact charac-
teristics might be helpful. We believe that such a database
would have a strong application in the assessment and com-
parison of contact sites predictors. One of the steps of creating
protein classification tools is to represent a protein sequence

Fig. 6 Frequency for the top 20
interacting pairs of membrane
proteins from Adamian and Liang
[9] (black bins) with our fp factors
of these pairs from proteins from
class alpha (gray bins) and class
beta (white bins). Here cutoff is
8 Å and separation is 10

Fig. 7 Frequency for the top 20
interacting pairs of soluble
proteins from Adamian and Liang
[9] (black bins) with our fp factors
of these pairs from proteins from
class alpha (gray bins) and class
beta (white bins). Here cutoff is
8 Å and separation is 10
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with a numerical model [24]. Parameters presented in our
study, such as fp, fpn, orWc, point residues with distinguishing
propensities of creating contact sites in different protein
groups and thus can be used in creation of such a model.
Furthermore, the introduced St factor can specify protein
topologies which do not match their classes in the meaning
of contact sites occurrence, indicating structural groups with
unique contact characteristics.

One of the typical assumptions in contact sites prediction is
that the number of contact sites in one protein is directly
proportional to its sequence length [25]. This rule is frequently
used while evaluating the accuracy of the contact sites predic-
tors [26–30]. A statistical model calculated after the prediction
of contact sites can provide the information if the number of
predicted contact sites is proper. It can also indicate if a group
of predicted contact sites perturbs the expected global statis-
tics of all predicted contact sites for one protein. For example,
if the average contact degree or the distribution of the Wc

factor is very far from the expected characteristic, then there
might be a possibility that some of the contact sites were badly
predicted. The observation of protein average contact degree
after contact sites prediction can suggest if the global predic-
tion result is proper. Furthermore, despite the fact that relations
between frequencies of forming contact sites by different
amino acids were similar in both alpha and beta classes, it is
possible to indicate amino acids whose propensities to create
contact sites are particularly high for one of those classes. It is
mainly related to their physicochemical nature and can also be
supportive in the contact sites prediction process.

In our study we showed that the application of the simple
algorithm based only on fp or fpn parameters could improve the
prediction accuracy of one of the top recent contact predictors
— the DCA algorithm. It is probable that the already achieved

result can be even better after combining these parameters
with the other introduced in our analysis, like contact degree
or parameter Wc. Also, there are various factors which could
affect the performance of our algorithm. Firstly, we obtained
the information about the protein structural classification bas-
ing on a simplemethod described by Eisenhaber et al. [21] and
Nakashima et al. [22]. However, there are many other protein
structural class predictors which can be used and achieve even
better accuracy [31–33]. Secondly, we applied the fp and fpn
parameters to improve the performance of the DCA algorithm.
The choice of the main prediction algorithm is of great im-
portance. We used DCA because it has been one of the top
contact sites prediction method recently. The obtained results
were satisfactory but there might be even better effect
achieved with the application of different predicting method.
For example, we observed that the prediction accuracy of
DCA for more than 200 best predicted contact pairs was only
at the level of 25 %. This significantly affected the

Fig. 8 Values of St in analyzed topologies for separation 7 and cutoff 10 Å (upper plot) and 12 Å (lower plot)

Fig. 9 Example domain 1mz9A00 of 12th topology “Single alpha-heli-
ces involved in coiled-coils or other helix-helix interfaces” [12]
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performance of our method since we used these pairs in
creation of a new set of 200 best predicted pairs. Another
important factor, which had an impact on the performance of
our method, was the source of the tested dataset. We showed
that much higher improvement was obtained for a dataset of

Morcos et al. [3] than for our dataset used in the analysis of
contact characteristics. This first group of domains was much
more specific since it contained mainly bacterial proteins,
while the second one was bigger and more general. The
dependency between the source of tested data and the

Fig. 10 Mean TP rate for different number of top-ranked contacts in
proteins from Morcos et al. [3] dataset. Results for original DCA algo-
rithm (black circle) and with application of fp (gray square) are presented

for: a domains from class alpha, b domains from class beta, c domains
from class alpha+beta, d all domains

Fig. 11 Mean TP rate for different number of top-ranked contacts in
proteins from dataset used to calculate the fp value in our study. Results
for original DCA algorithm (black circle) and with application of fp (gray

square) are presented for: a domains from class alpha, b domains from
class beta, c domains from class alpha+beta, d all domains
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performance of contact sites prediction methods is well
known. Nevertheless our method showed some improvement
of a chosen contact predictor accuracy. Especially when the
analyzed data is not representative enough or when the results
are divided into different structural classes. Finally, the per-
formance of our method can also be dependent on a
number of amino acids of type X in a sequence, since
these residues were not analyzed in our algorithm. Therefore,
they were not removed from the initially predicted set of the
200 best predicted pairs.

A high demand for the numerical biological data has been
common recently. One of the most popular databases, gather-
ing the information about various physicochemical and bio-
chemical properties, expressed in numbers, is AAindex [34].
By typing the word contact in its browser it outputs various
information such as the interaction energies between side
chains of different amino acids [35] or the measure of the
exposure of a residue to solvent [36]. There are only single
results containing data related to the subject of the contact sites
and protein classification [8]. The results presented in our
study can support the AAindex database. Values of the pro-
pensities of different amino acid types to create contact sites
(Wc factors), attributed to different structural classes, are pre-
sented in Appendix A of our work. Also, the values of param-
eter fp, before and after the normalization, are shown in
Appendix B. This data is a ready-to-use set of values that
can be included into the AAindex resources.

In the previous years there were other studies on the pro-
pensities of creating contact sites by different amino acids

[6–10]. We compared our results with Adamian and Liang
because of distinct differences between contact definition,
dataset composition, and dataset size. Their results were con-
sistent with our work. However, there were also other studies
which applied different methodology than ours. In the studies
published in [6–8] contact propensities were represented by the
effective contact energies between residues. The energies were
obtained from the numbers of contacts observed in experimen-
tal studies. In [6–8] contact site definition was based on the
distance between the centers of the side chain atoms (usually
Cβ) and the cutoff value equal 6.5 Å. It was shown that there is
a high similarity between intra- and intermolecular contact
energies. Zhang and Kim [8], whose results can be found in
the AAindex, also provided the data about the influence of the
secondary structures on the inter-residue interactions [8].
Unfortunately, in the year 2000 significantly fewer protein
structures were known than currently, thus the datasets were
not very numerous (Zhang and Kim used only 407 selected
protein domains). Since the validity of a statistical survey
depends on the size of the dataset [37], we analyzed almost
6000 non-redundant protein domains (sequence identity not
higher than 50 %) in our study. The results of contact propen-
sities based on the contact energies were comparable with those
received in our study— presented as normalized parameters fp
in lower halves of the Tables in Appendix B. The propensity of
residues to create contact sites was also examined by Faure
et al. [10]. Their definition was closer to our fpn parameter than
those based on contact energies. The main difference is that
Faure et al. analyzed preferential contacts of amino acid types

Fig. 12 Mean TP rate for different number of top-ranked contacts in
proteins from Morcos et al. [3] dataset. Results for original DCA algo-
rithm (black circle) and with application of fpn (gray square) are presented

for: a domains from class alpha, b domains from class beta, c domains
from class alpha+beta, d all domains
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in a different manner, in which the order of amino acids
mattered and there could be different values of relative contact
frequency for residue pairs such as Ala-Leu and Leu-Ala.
Despite these differences, our results show some qualitative
similarities which are, for example, a high contact propensity of
cysteine or affinities between certain residues. However, there
is still a significant difference in size and the composition of
datasets used in both studies. Faure et al. examined about 1200
protein chains with 10 % pairwise sequence identity while our
dataset consisted of almost 6000 protein domains with 50 %
sequence identity. Moreover, our domains were those identi-
cally classified by SCOP and CATH databases and Faure et al.
used only SCOP classification. Summing up, we confirmed the
previously reported results, despite the differences in contact
site definition, size of the dataset, and methods used. Our study
presents an insight into the subject of amino acids propensities
to the creation of contact sites based on the most recent datasets
and is compatible with the previous studies. Presented results
show the possibility of their application in the process of
contact predictors assessment or contact site prediction.
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